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This paper reformulates the problem of direction-of-arrival (DOA) estimation for unknown nonuniform
noise by exploiting a sparse representation of the array covariance vectors. In the proposed covariance
sparsity-aware DOA estimator, the unknown noise variances can be eliminated by a linear transformation,
and DOA estimation is reduced to a sparse reconstruction problem with nonnegativity constraint. The
proposed method not only obtains an extended-aperture array with increased degrees of freedom which
enables us to handle more sources than sensors, but also provides superiority in performance and
robustness against nonuniform noise. Numerical examples under different conditions demonstrate the
effectiveness of the proposed method.
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1. Introduction

The problem of direction-of-arrival (DOA) estimation frequently
arises in a variety of applications, such as radar, sonar, radio as-
tronomy and so on [1]. A large number of excellent solutions have
been provided to this problem during the past several decades.
Recently, an advanced topic, namely, sparse signal representation
(SSR) framework, has attracted a significant interest in DOA esti-
mation, mainly due to the key observation that the DOAs of signals
are substantially sparse in all the spatial domain. The idea of uti-
lizing SSR, which is intrinsically different from the subspace-based
methods like MUSIC [2] and Root-MUSIC [3], provides a new sparse
signal reconstruction perspective for DOA estimation, and has been
well studied in various contexts. The �1-based singular value de-
composition (L1-SVD) algorithm [4] and its varieties [5–7], mainly
address the DOA estimation problem by directly representing the
array output in time domain with an overcomplete basis from the
array response vector. To make use of the second-order statistics
of the array output, another kind of methods [8–11] tackles the
underlying DOA parameter estimation problem by using a sparse
representation of the array covariance matrix/vectors and offers
clear-cut guidelines for the selection of the regularization parame-
ter.

Despite some attractive features of these aforementioned SSR-
based methods, all of them explicitly or implicitly assume that
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the sensor noises are spatially uniform/homogeneous and with
a common variance. Indeed, they rest upon the uniform noise
assumption and the knowledge of noise variance in sparse rep-
resentation modeling to the benefit of choosing an appropriate
regularization parameter for robustness guarantee. In some prac-
tical applications, the uniform white noise assumption, however,
might be unrealistic since the noise levels among all sensors ex-
hibit some disturbances due to the nonidealities of the practical
arrays, such as the nonuniformity of the sensor response, the non-
ideality of the receiving channel and the mutual coupling between
sensors [12,13]. Therefore, the sensor noises should be, in general,
considered as the case of nonuniform noise levels with an arbitrary
diagonal covariance matrix. When such a deviation from the spa-
tially uniform noise assumption occurs, the conventional SSR-based
DOA estimation techniques will mismodel the noise and their per-
formance may thereby degrade severely. While the recent sparse
iterative covariance-based estimation (SPICE) method [14], based
on a sparse covariance fitting criterion, takes account of the noise
in a natural manner against the uniform noise assumption, it still
relies on the knowledge of the noise variances which need to be
estimated in each iteration. This motivates us to explore another
new direction finding techniques for the nonuniform noise case.

In this paper, from the perspective of the practical applica-
tions and in the SSR framework, a new covariance sparsity-aware
DOA estimation method is proposed for the nonuniform noise case.
Through vectorizing the covariance matrix, the unknown noise
variances can be removed by a linear transformation. Then a novel
but noise-free sparse representation, with measurement matrix

from extended steering vectors which provide an increased degrees
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of freedom of linear arrays, is obtained, and the DOA estimation
can be cast as a problem of recovering a nonnegative sparse vector.
As we shall show in Section 3, the proposed covariance sparsity-
aware DOA estimator does not require the a priori knowledge of
the source number, and is capable of handling more sources than
sensors. Additionally, due to the extended-aperture of linear arrays
and the elimination of noise variances, the proposed method can
provide high resolution as well as robustness against nonuniform
noise.

2. Problem formulation

Consider K narrowband far-field signals from distinct directions
{θk}K

k=1 impinging on an arbitrary linear array of M (M > 1) sen-
sors. The M × 1 array output vector with N snapshots can be
modeled as

x(t) = A(θ)s(t) + n(t), t = 1, . . . , N (1)

where θ = [θ1, . . . , θK ]T , s(t) = [s1(t), . . . , sK (t)]T and n(t) =
[n1(t), . . . ,nM(t)]T are, respectively, the unknown parameter vec-
tor of DOAs, the K × 1 signal vector and the M × 1 noise vector.
Here, (·)T denotes the transpose, A(θ) = [a(θ1), . . . ,a(θK )] ∈C

M×K

is the array manifold matrix whose kth steering vector is given by

a(θk) = [
1, e− j2πd2 sin θk/λ, . . . , e− j2πdM sin θk/λ

]T
(2)

where θk ∈ (−π/2,π/2), λ and dm (d1 = 0) represent the signal
wavelength and the position of the mth sensor corresponding to
the first sensor, respectively. Some statistical assumptions on the
source signal and noise are made as follows:

(1) The source signals are spatially uncorrelated, temporally white,
and zero-mean.

(2) The noises {nm(t)}M
m=1 are zero-mean, complex circular Gaus-

sian, and with variances {σ 2
m}M

m=1, respectively.
(3) The noise is statistically independent of all the signals.

With these assumptions, we have the following covariance ma-
trix

R = E
{

x(t)xH (t)
} = A(θ)PAH (θ) + Q (3)

where E(·) and (·)H , respectively, denote the expectation operator
and conjugate transpose, P = E{s(t)sH (t)} = diag(p) is the source
waveform covariance matrix with diagonal elements p = [p2

1, . . . ,

p2
K ]T being the signal power vector, and Q = E{n(t)nH (t)} =

diag(σ ) is the noise covariance matrix with σ = [σ 2
1 , . . . , σ 2

M ]T

being the noise power vector. The work is to estimate the DOAs
{θk}K

k=1 from (3) without any knowledge of noise powers {σ 2
m}M

m=1
and the source number K .

3. DOA estimation in unknown nonuniform noise environment

3.1. Proposed covariance-based sparse representation

Following [15] and vectorizing R in (3), we then have

y � vec(R) = vec

[
K∑

k=1

p2
k a(θk)aH (θk)

]
+ vec(Q)

= [
A∗(θ) � A(θ)

]
p + 1n (4)

where 1n = [σ 2
1 eT

1 , . . . , σ 2
M eT

M ]T with em (m = 1, . . . , M) being an
M × 1 column vector of all zeros except a 1 in the mth en-
try, A∗(θ) � A(θ)� [a∗(θ1) ⊗ a(θ1), . . . ,a∗(θK ) ⊗ a(θK )] ∈ C

M2×K in

which (·)∗ , � and ⊗ represent the complex conjugate, Khatri–Rao
product and Kronecker product, respectively. It is interesting to ob-
serve that y in (4), similar to (1), can be taken as the array output
of single snapshot where A∗(θ) � A(θ), p, and 1n , are the virtual
manifold matrix, equivalent source vector, and noise vector, re-
spectively. Notice that the vector 1n has only M nonzero elements
which equal to {σ 2

m}M
m=1. Based on this observation, we can remove

these elements of y corresponding to the positions of {σ 2
m}M

m=1
in 1n; this also means the rest M(M −1) entries of y corresponding
to these positions of zero elements in 1n are preserved. Mathemat-
ically, this operation can be formulated as

z � Jy = J
[
A∗(θ) � A(θ)

]
p = B(θ)p. (5)

Here, J is an M(M − 1) × M2 selecting matrix and can be repre-
sented as

JT = [J1, J2, . . . , JM−1] (6)

where

Jm = [ẽ(m−1)(M+1)+2, ẽ(m−1)(M+1)+3, . . . , ẽm(M+1)] ∈ R
M2×M ,

m = 1, . . . , M − 1, (7)

ẽi (i = (m − 1)(M + 1) + 2, . . . ,m(M + 1)) is an M2 × 1 column
vector with 1 at the ith position and 0 elsewhere, B(θ)� J[A∗(θ)�
A(θ)] ∈ C

M(M−1)×K is the new steering matrix. This elimination
operation avoids the estimation of noise variances, facilitating a
noise-free sparse representation.

Typically, the underlying SSR-based DOA estimation methods
involve a grid sampling over the potential space from −π/2 to
π/2, which forms the grid set Θ = {θ̃1, . . . , θ̃Ñ } where we as-
sume that the true DOAs are exactly on the sampling grid Θ and
Ñ � M(M − 1). As a result, z can be rewritten as the following
noise-free sparse representation

z = B(Θ)η′ (8)

where B(Θ) = J[A∗(Θ) � A(Θ)] ∈ C
M(M−1)×Ñ is an over-complete

dictionary, η′ is ideally a K -sparse vector (viz., ‖η′‖0 = K , ‖ ·‖0 de-
notes the �0-norm) with nonzero values {p2

k }K
k=1 whose positions

are indexed by the corresponding signal directions {θk}K
k=1 in Θ .

That is, we can infer that there exists a corresponding source from
θ̃k̃ (k̃ = 1, . . . , Ñ) if for some k̃ the k̃th element of η′ to be es-
timated is deemed to be nonzero. Therefore, the DOA estimation
problem turns out to be that of recovering the sparse vector η′
and detecting the locations of nonzero elements of this vector.

3.2. Separable signal number

We note that the dimension of the virtual manifold matrix B(θ)

is M(M − 1), which significantly enhances the degrees of freedom
(DOF) of the original linear array with M degrees of freedom and
opens up the possibility of handling the case of more sources than
sensors (K � M), i.e., the so-called underdetermined DOA estima-
tion [15,16]. This motivates us to discuss the problem of separable
signal number of the proposed method based on (8). This problem
naturally relates to the sparsity of the vector η′ since, as is shown
in (8), the DOA estimation problem relies on the sparse estimation
of this vector. The following proposition provides the key result on
the separable signal number.

Proposition 1. If any M-element array (possibly nonlinear) meets un-
ambiguity, then the maximum separable signal number is [M(M −
1)]/2. For 2-level nested array with M1 and M2 (M1 + M2 = M) el-
ements respectively in each level, this number is M2(M1 + 1) − 1. For
uniform linear array (ULA), this number is M − 1. Instead, if the array

structure suffers from ambiguity, then this number is 0.
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The proof of Proposition 1 is given in Appendix A. It follows
from Proposition 1 that it is possible to tackle the underdeter-
mined case of K � M if we exploit the class of nonuniform arrays
such as nested arrays [16] to increase the DOF. However, the pro-
posed method cannot handle the manifold ambiguity (or spatial
aliasing) problem. Note that in wideband signal scenario, the am-
biguity problem might be avoided by using multiple dictionaries to
jointly recover the sparse vectors, as has been elaborated in [9,17].
Actually, the essential idea in [9,17] is to employ the frequency
diversity to handle the ambiguity problem. As a result, one pos-
sible approach to deal with this issue is to exploit the frequency
diversity of the wideband signals. This will be addressed as our
future work. Interestingly, for case of 2-level nested array with a
ULA in each level, the proposed approach has the same identifiabil-
ity condition on the separable signal number as that of the spatial
smoothing based MUSIC (SS-MUSIC) approach [16]. Nevertheless,
their derivations are essentially different.

Remark. Intuitively, the deleting operation in (5) may result in the
loss of large amounts of information since we have removed M
elements of y. However, this removing operation results in the
loss of only one degree instead of M degrees of freedom (see
Appendix A), which indicates that there is almost no loss of effect
or information on the performance because in Appendix A we have
proved that DOFB

max = DOFA
max − 1 = M(M − 1) ∈ O(M2) where

DOFA
max = M(M − 1) + 1 ∈O(M2) [16], i.e., DOFA

max ≈ DOFB
max.

3.3. DOA estimation

As just described previously, the DOA estimation problem can
be cast as a problem of finding the sparsest solution of under-
determined linear system z = B(Θ)η. Naturally, we should choose
the �0-norm as an ideal measure of sparsity. However, the �0-norm
minimization problem is nonconvex, NP-hard and thereby cannot
be solved. Therefore following [4–11] and together with the non-
negativeness of η′ , we can relax this problem to a simpler �1-norm
minimization problem, where we equivalently seek to

min
η

1T η s.t. z = B(Θ)η, η � 0 (9)

where 1 and 0 are column vectors composed of 1 and 0, and � is
� with an elementwise operation.

In practice, only finite samples are available. So the unknown y
is estimated from the N snapshots, viz., ŷ = vec(R̂) = y+�y where
R̂ = (1/N)

∑N
t=1 x(t)xH (t), and �y = ŷ−y is the estimate error. The

corresponding estimate error of z is

�z = ẑ − z = J�y (10)

where ẑ = Jŷ denotes the estimate of z. Hence, problem (9) can be
converted into the following quadratic error-constrained minimiza-
tion problem

min
η

1T η s.t.
∥∥ẑ − B(Θ)η

∥∥2
2 � β, η � 0 (11)

where ‖ · ‖2 denotes the �2-norm, β is a critical threshold parame-
ter on the upper bound of the error �z. Another approach to solve
this problem is the Lagrangian form, i.e.,

min
η

∥∥ẑ − B(Θ)η
∥∥2

2 + ξ1T η s.t. η � 0 (12)

where ξ is a regularization parameter which balances the spar-
sity of η and the residual noise of �z. The estimator in (12) ap-
pears similar to the sparse spectrum fitting (SpSF) algorithm [11]
where the best choice of ξ has been well elaborated. However,

the SpSF estimator is only applicable to the uniform noise model
because the best regularization parameter relies on the noise vari-
ance. In fact, problems (11) and (12) are, of course, equivalent,
provided that some special relationships between β and ξ are sat-
isfied. Usually, it is more natural to determine an appropriate β

rather than ξ if some a priori knowledge on the residual noise is
available. Therefore, the formulation (11) is preferred in this paper
because a reasonable selection of β can be easily obtained through
the asymptotic property of �y, as will be shown in the following.

By referring to [19], the error �y is asymptotically normal
(AsN) distribution, viz., �y = ŷ − y = vec(R̂ − R) ∼ AsN(0M2,1,

(RT ⊗ R)/N) which along with (10) yields

�z ∼ AsN

(
0M×(M−1),1,

1

N
J
(
RT ⊗ R

)
JT

)
. (13)

Combining (10) and (13), we get

W− 1
2
[
ẑ − B(Θ)η

] ∼ AsN(0M(M−1),1, IM(M−1)) (14)

where the weighted matrix W−1/2 is the Hermitian square root
of W−1, W = J(RT ⊗ R)JT /N , IM(M−1) denotes the M(M − 1) ×
M(M − 1) identity matrix. From (14), we can further deduce that∥∥W− 1

2
[
ẑ − B(Θ)η

]∥∥2
2 ∼ Asχ2[M(M − 1)

]
(15)

where Asχ2[M(M − 1)] represents the asymptotic chi-square dis-
tribution with M(M − 1) degrees of freedom. Following (15), how
to select the parameter β is now quite obvious. We should in-
troduce the parameter β such that the inequality ‖W−1/2[ẑ −
B(Θ)η]‖2

2 � β is satisfied with a high probability p̃, that is

Pr
{
χ2

M(M−1) � β
} = p̃, β = χ2

p̃

[
M(M − 1)

]
(16)

where Pr(·) stands for the probability distribution. Let Ŵ = J(R̂T ⊗
R̂)JT /N be the estimate of W. Then a statistically robust problem
for DOA estimation can be reduced as

min
η

1T η s.t.
∥∥Ŵ− 1

2
[
ẑ − B(Θ)η

]∥∥
2 �

√
β, η � 0. (17)

In a nutshell, the idea behind the proposed method is to find
the sparsest spatial spectrum estimation of the signals to best
match or fit the covariance vector ẑ. Particularly in (17), the
quadratic constrained part can be viewed as the weighted least
square fitting criteria which is an alternative to the maximum like-
lihood estimation and can asymptotically (in N) attain the Cramér–
Rao Lower Bound (CRLB) [19]. Therefore, the proposed estima-
tor in (17) has a certain statistical significance in achieving bet-
ter DOA estimation. Simulation results in the subsequent section
will confirm this point as well, including the robustness against
nonuniform noise. Additionally, through our previous analysis, the
number of source and the noise variances are not needed in the
proposed method, which, however, is not shared by the existing
SSR-based methods because, for example, they require the source
number for subspace separation (see, e.g., [4]) or for choosing an
appropriate regularization parameter (see, e.g., [6,9]), and the noise
variance, whose estimate also relies on the source number, for es-
tablishing a sparse representation model (see, e.g., [8,10]) or also
for the selection of the regularization parameter (see, e.g., [9,11]).
Obviously, problem (17) is a second-order cone program problem
and can be efficiently solved by off-the-shelf optimization soft-
wares such as CVX [21].

4. Simulation results

In this section, a series of numerical experiments under differ-
ent conditions are conducted to examine the performance of the
proposed estimator. Throughout this section, the sensor noises are

generated from a zero-mean complex Gaussian distribution. The
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Fig. 1. RMSE versus SNR for quasi-stationary signals in the underdetermined case.
M = 6, K = 8, N = 3200.

probability p̃ for β in the proposed algorithm is set as 0.999. All
the numerical results are obtained from 1000 independent trials
and the corresponding root mean square error (RMSE) is defined
as

RMSE =
[

1

1000K

K∑
k=1

1000∑
r=1

(
θ̂ r

k − θk
)2

]1/2

where θ̂ r
k denotes the estimate of θk in the rth trial. Addition-

ally, to measure the variation of the noise environment, we define
the worst noise power ratio (WNPR) as WNPR = σ 2

max/σ
2
min [12],

where σ 2
max and σ 2

min denote the maximum and the minimum
noise variance, respectively.

4.1. Underdetermined DOA estimation

We consider a 2-level nested array of a total of 6 sensors,
whose element positions are {0,d,2d,3d,7d,11d} where d = λ

2 ,
with a ULA structure of 3 sensors in each level. Meanwhile,
eight narrowband Gaussian sources from directions [−60◦,−42◦,
−30◦,−15◦,0◦,10◦,22◦,35◦] impinge on this nested array. In or-
der to compare with KR-MUSIC [15], all the sources are assumed
to be quasi-stationary and divided into 16 frames (intervals) with
200 snapshots in each frame, i.e., a total of 3200 snapshots. The
input signal-to-noise ratio (SNR) is defined as 10 log10{(1/N) ·
(
∑N

t=1 E[‖A(θ)s(t)‖2])/(∑M
m=1 σ 2

m)} dB [15]. The noise covariance
matrix and the candidate direction grid are set as Q = diag{10.2,

5.6,8.5,11.2,7.8,9.5} (i.e., WNPR = 2) and 1◦ interval over
[−90◦,90◦], respectively. Based on these experimental conditions,
the simulation results on the RMSE versus SNR are depicted in
Fig. 1. Meanwhile, the SS-MUSIC approach [16], based on a spatial
smoothing processing, is also included for comparison. As is shown
in Fig. 1, the proposed approach performs the best over all the
range of SNR values. The SS-MUSIC algorithm is somewhat infe-
rior to the proposed method mainly because the spatial smoothing
processing will lead to aperture loss.

In what follows, we investigate the performance of the pro-
posed method for the underdetermined DOA estimation of sta-
tionary Gaussian signals. To this end, seven stationary sources
with equal power p2, arriving from [−60◦,−42◦,−30◦,−15◦,20◦,
35◦,55◦], are considered. The input SNR is defined as [12]

SNR = 10 log10

[
p2

M

M∑
m=1

(
1/σ 2

m

)]
dB. (18)

The other experimental conditions including the noise covariance
and the choice of dictionary grid are the same as the previous
example. Figs. 2 and 3 show the RMSEs, respectively, versus the
SNR with N = 300 and versus the number of snapshots with
SNR = 0 dB. Also, we plot the relevant stochastic CRLB for the sta-

tionary Gaussian signals in nonuniform noise, which is derived in
Fig. 2. RMSE versus SNR for stationary signals in the underdetermined case. M = 6,
K = 7, N = 300.

Fig. 3. RMSE versus the number of snapshots for stationary signals in the underde-
termined case. M = 6, K = 7, SNR = 0 dB.

Appendix B. It can be seen from Figs. 2 and 3 that the proposed
approach still outperforms the SS-MUSIC whenever the SNR or the
number of snapshots is high or small.

4.2. Overdetermined DOA estimation

In the following examples, we consider two stationary Gaussian
sources with equal power levels impinging upon an 8-element ULA
with half-wavelength inter-sensor spacing, from fixed directions
[−5◦,5◦] except for the bias analysis. The proposed method is
compared with those of the state-of-the-art methods, including the
MUSIC [2], Root-MUSIC [3], L1-SVD [4], L1-SRACV [8], SPICE [14]
and SpSF [11]. Meanwhile, the conventional CRLB (which is here
referred to as CCRLB) [12] for nonuniform noise is also considered
to further evaluate their performances. It should be noticed that
the CRLB in this paper should be lower than the CCRLB since the
implicit a priori knowledge of the signal uncorrelation is incorpo-
rated into the estimator [20]. However, the CCRLB cannot be ap-
plied to the case of underdetermined DOA estimation because this
will lead to the noninvertibility of the Fisher information matrix.
This is why we did not plot the CCRLB in the previous example.
The SNR is defined as the same as (18). In view of the require-
ment of noise variance in L1-SVD, L1-SRACV and SpSF, the estimate
of noise variance is given by the arithmetic mean of the M − K
smallest eigenvalues of R̂, provided that the source number K is
known a priori. However, this requirement is not needed in our
proposed approach. In order to achieve better precision, the adap-
tive grid refinement method [4] is considered for RMSE analysis,
where the number of iterations is set as 5, and in each iteration,
a 2-point locally uniform grid is distributed symmetrically around
each spectral peak, with one-third shrinking and spacing initialized
to 1◦ interval.

Firstly, we consider the uniform noise case, i.e., a special case
for nonuniform noise when WNPR = 1. In this experiment, the
noise variances and the number of snapshots are fixed at 10
and 400, respectively. Accordingly, the result of the empirical

probability of resolution versus the SNR is shown in Fig. 4, where
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Fig. 4. Probability of resolution versus SNR for uniform noise in the overdetermined
case. M = 8, K = 2, N = 400.

the DOAs are considered to be resolved within 1◦ estimate er-
ror. It can be observed that the proposed approach is superior to
the other compared methods when SNR � −8 dB, but slightly less
accurate than that of SpSF when SNR < −8 dB. However, the res-
olution probability of SpSF is barely able to attain one even at
high SNRs, and as reported in the following experiments, its per-
formance will degrade more seriously for the nonuniform noise
environment.

Now, we consider the nonuniform noise case where the noise
covariance matrix is fixed at Q = Q1 = diag{10.5,9.0,10.0,8.0,

12.0,8.5,6.0,10.0}, i.e., WNPR = 2. Figs. 5(a) and 5(b) depict the
RMSE versus the SNR with N = 400, and the RMSE versus the
number of snapshots with SNR = 0 dB, respectively. From Fig. 5(a),
we observe that the proposed method has the lowest RMSE among
all the algorithms, particularly when the SNR is greater than 0 dB.
Moreover, it approaches the CRLB well. However, the L1-SVD and
SpSF provide somewhat poor performance mainly due to the sub-
stantial bias for closely spaced sources and the underestimated
estimate of the noise variance. From Fig. 5(b), it is seen that our
technique can still agree well with the CRLB when the number of
snapshots is greater than about 200. Nevertheless, a performance
degradation appears in a small number of snapshots (e.g., N < 100)
mainly thanks to the fact that a consistent estimate of R̂ is guaran-
teed only for sufficiently large samples. Other SSR-based methods,
however, have relatively large errors in nonuniform noise environ-
ment, especially in low SNRs and for large samples.

Next, we test the performance of the proposed algorithm in
the worst noise case with a large variation of different sensor
noise variances, where Q = Q2 = diag{10.0,1.2,3.5,18.0,2.0,8.5,

24.0,6.5} and WNPR = 20. The curves of bias versus the angle sep-
aration are plotted in Fig. 6(a) where the first source, SNR and
number of snapshots are fixed at −25◦ , 5 dB and 400, respec-
tively. Meanwhile, the case of Q = Q1 is also plotted. It is seen
from Fig. 6(a) that the biases in the two different noise cases are
somewhat similar. In Fig. 6(b), we plot the RMSE versus the in-
put SNR, and the other experimental parameters are the same as
those in Fig. 5(a). We see that our technique still has a similar per-
formance to that of the example shown in Fig. 5(a), and can still
yield more competitive estimate than others, which becomes read-
ily apparent at low SNRs. The other methods, however, provide a
larger error. Additionally, to test how the parameter β affects the
behavior of the proposed method, in Fig. 7 we plot the empirical
probability of resolution versus the SNR under various probability
values near one of p̃. It can be observed from Fig. 7 that a rela-
tively small value of p̃ (e.g., p̃ = 0.9) is slightly better at low SNRs,
whereas fails to reach one completely in probability of resolution
even at sufficiently large SNRs (see the enlargement of the part
of graph in Fig. 7). In contrast, the scheme of choosing a higher p̃
can tend to one in probability of resolution for large SNRs, while in
small SNRs result in relatively poor performance. Therefore, choos-
ing the probability p̃ as 0.999 would be an acceptable compromise,

which is also the reason that we did so in all other experiments.
Fig. 5. RMSE of various algorithms for nonuniform noise in the overdetermined case
with M = 8, K = 2. (a) N fixed at 400. (b) SNR fixed at 0 dB.

Finally, to further validate the robustness of the proposed al-
gorithm against the nonuniform noise model, we depict the RMSE
versus the WNPR in Fig. 8, where the WNPR is varied from 20
to 200 under the case of N = 400, Q = Q2. It can be seen from this
figure that as the increment of SNR, the CRLB and CCRLB become
very close, especially for SNR = 20 dB. The RMSE of the proposed
technique is very close to the CRLB (also for CCRLB). This indicates
again that the proposed approach is robust against the nonuniform
noise.

5. Conclusion

In this work, we have presented a new DOA estimation method
using a covariance-based sparse representation in the presence
of unknown nonuniform noise. Our investigation has shown that,
with moderate snapshots, the proposed method is able to yield
reasonably accurate DOA estimation and agree well with the CRLB.
Meanwhile, it should be noted that the proposed approach does
not rely on the source number and the noise variances. Simulation
results are in line with the theoretical analysis.
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Appendix A. Proof of Proposition 1

According to the co-array principle [16], the maximum DOF
achievable in A∗(θ) � A(θ) is DOFA

max = M(M − 1) + 1. Note that
these row vectors of A∗(θ) � A(θ) which we have been removed
are all composed of 1 and linearly dependent (M occurrences).
Thus pre-multiplying J to A∗(θ) � A(θ) will give rise to a de-
gree 1 deficiency, namely, the maximum DOF achievable of B(θ)

is DOFB
max = M(M − 1). With nonambiguity in the array structure,

we have Spark[B(Θ)] = M(M − 1) + 1 where Spark[B(Θ)] denotes
the smallest possible integer of columns of B(Θ) that are linearly
dependent. Based on Corollary 1 of [18], there exists a unique
sparsest representation η such that z = B(Θ)η if and only if

‖η‖0 <
Spark[B(Θ)]

2
= M(M − 1) + 1

2
(A.1)

which implies that

‖η‖0 �
[
M(M − 1)

]
/2. (A.2)

Thus, the maximum separable signal number is M(M − 1)/2.
If a 2-level nested array [16] with M1 and M2 elements respec-
tively in each level is considered, we can obtain Spark[B(Θ)] =
2M2(M1 + 1) − 1 because DOFB

max = 2M2(M1 + 1) − 2 again from
the co-array principle. Then according to (A.1), the maximum sep-
arable signal number is M2(M1 + 1) − 1. Similarly, it is easy to
obtain that this number in ULA structure is M − 1 since the DOF
of B(θ) in ULA structure is 2M −2. Obviously, if the array structure
suffers from ambiguity, then Spark[B(Θ)] = 2, which directly leads
to the uniqueness condition ‖η‖0 = 0 from (A.1). This completes
the proof.

Appendix B. Stochastic CRLB for nonuniform noise

In the unconditional stochastic case, the vector of unknown pa-
rameters is defined as

Ψ = [
θ T , δT ]T

, δT = [
pT ,σ T ]T

. (B.1)

Recall that the CRLB is the inverse of the Fisher information ma-
trix (FIM). As a result, using the formula that trace{WXYZ} =
vecH (XH )(WT ⊗ Y)vec(Z), the (q, l)th element of the FIM associ-
ated with R is given by [20,22]

[F]q,l = N Trace

{
R−1 ∂R

∂ψq
R−1 ∂R

∂ψl

}

= NrH

q WRrl for q, l = 1, . . . ,2K + M (B.2)
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where WR = R−T ⊗ R−1, rq = vec(∂R/∂ψq), ψq is the qth element
of the parameter vector Ψ , and

F =
[

Fθθ Fθδ

Fδθ Fδδ

]
. (B.3)

Notice that the covariance matrix can be reformulated as

R =
K∑

k=1

a(θk)p2
k aH (θk) +

M∑
m=1

σ 2
memeT

m (B.4)

where em is defined in (4). According to (B.4) and using the fact
that vec(baT ) = a ⊗ b, we obtain

rθk = vec(∂R/∂θk) = p2
k vec

[
a′(θk)aH (θk) + a(θk)

(
a′(θk)

)H ]
= p2

k

[
a∗(θk) ⊗ a′(θk) + (

a′(θk)
)∗ ⊗ a(θk)

]
rp2

k
= vec

(
∂R/∂ p2

k

) = vec
[
a(θk)aH (θk)

] = a∗(θk) ⊗ a(θk)

rσ 2
m

= vec
(
∂R/∂σ 2

m

) = vec
(
emeT

m

) = em ⊗ em (B.5)

where a′(θk) = ∂a(θk)/∂θk . Now combining (B.2), (B.5) and the
Khatri–Rao product, we can calculate the submatrices of F as

Fθθ = NDH
θ WRDθ , Fθδ = NDH

θ WRDδ

Fδδ = NDH
δ WRDδ, Fδθ = NDH

δ WRDθ = FH
θδ (B.6)

where Dθ = [rθ1 , . . . , rθK ] = [A∗(θ) � A′(θ) + (A′(θ))∗ � A(θ)]P,
A′(θ) = [a′(θ1), . . . ,a′(θK )], Dδ = [rp2

1
, . . . , rp2

K
, rσ 2

1
, . . . , rσ 2

M
] =

[A∗(θ) � A(θ), IM � IM ]. Now we have all the submatrices in F for
CRLB calculation. Invoking the matrix inverse lemma of partitioned
matrices, we eventually get

CRLBθθ = {
Fθθ − FθδF−1

δδ Fδθ

}−1
. (B.7)
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